In 1983, Tunnell published a paper giving an almost complete answer to an ancient problem: determine a test whether or not a given positive integer D is the area of a right triangle with rational sides. His main result is:

Theorem. Let $g = q \prod_1^\infty (1 - q^{8n})(1 - q^{16n})$ and for each positive t, $\theta_t = \sum q^{tn^2}$. Set $g\theta_2 = \sum a(n)q^n$ and $g\theta_4 = \sum b(n)q^n$.

i. If $a(n) \neq 0$ then n is not the area of any right triangle with rational sides.

ii. If $b(n) \neq 0$ then $2n$ is not the area of any right triangle with rational sides.

Classically, an integer is called *congruent* if it is the area of a right triangle with rational sides; Otherwise it is called *noncongruent*. One can show that D is a congruent number if and only if the group $E_d(\mathbb{Q})$ of rational points on the elliptic curve $E_d : y^2 = x^3 - dx$ is infinite [Ko, page 46]. (In fact, the explicit relation between the curve and congruent numbers is given in the paper in detail.)

The idea of the proof of the theorem is as follows: First L–series of the elliptic curve $E : y^2 = x^3 - x$ is the Mellin transform of the image of some forms of weight $3/2$, namely $g\theta_2, g\theta_4, g\theta_8, g\theta_{16}$, under Shimura’s correspondence [Sh]. Second, the main theorem of Waldspurger [Wa, Theorem 1] shows that the square of n^{th} coefficient of a suitable form of this type is a nonzero multiple of $L(E^d, 1)$ for $d = n$ or $d = 2n$. Finally, the result of Coates-Wiles [Co] shows that if $L(E^d, 1) \neq 0$ then $E^d(\mathbb{Q})$ is finite.

The paper mainly consists of three sections. In the first section, ”suitable” forms weight $3/2$ are determined. In the second section, Waldspurger’s
Theorem is applied to relate the coefficients of these forms with $L(E^d, 1)$. In the final section, one applies these results to the congruent number problem.

One knows that the curve E^d has complex multiplication by $\mathbb{Z}[i]$ and L-function $L(E^d, s)$ is the Mellin transform of the form $\phi \otimes \chi_d$ where Φ is the unique normalized newform of weight 2, level 32, trivial character and χ_d is the quadratic Dirichlet character $\left(\frac{\cdot}{d} \right)$ [Ko, page 81]. One also knows that if f is a cusp form of weight $k/2$, for $k > 1$ odd, which is an eigenform for Hecke operators $T(p^2)$ with eigenvalues λ_p for all primes p then there is a form of weight $k - 1$ which is an eigenform for $T(p)$ with eigenvalue λ_p for all primes p, which is called the Shimura map from weight-$k/2$ cusp forms to weight-$k - 1$ forms. This map squares the corresponding characters [Sh].

One has that the dimension of the forms of weight $3/2$, level 128 and a fixed quadratic character is 3 which is the dimension of the forms of weight $1/2$ of level 128 and quadratic character [Ch]. This suggests constructing such weight-$3/2$ forms by multiplying such weight-$1/2$ forms by weight-1 form g.

By the results of Serre-Stark [Se], one can see that $\{g_{\theta_2}, g_{\theta_8}, g_{\theta_{32}}\}$ forms a basis for the space of cusp forms of weight $3/2$, level 128, trivial character, and $\{g_{\theta_1}, g_{\theta_4}, g_{\theta_{16}}\}$ is a basis for the space of cusp forms of weight $3/2$, level 128, character χ_8.

In the first section, it is proven that $g = \sum(-1)^m n q^{(4m+1)^2 + 16n^2} = \sum(-1)^n q^{(4m+1)^2 + 8n^2}$ by considering its L-series as the Dirichlet L-series of a character of a quadratic extension K/\mathbb{Q} where $K \subset \mathbb{Q}(\xi_8)$. The main result in this section is:

Theorem 1. The weight-$3/2$ forms $g_{\theta_2}, g_{\theta_4}, g_{\theta_8}, g_{\theta_{16}}$ correspond to the unique normalized newform ϕ (of level 32, trivial character) under Shimura’s map.

One can summarize its proof as follows: First, one considers the space $\{g_{\theta_2}, g_{\theta_8}, g_{\theta_{32}}\}$ which is preserved by the Hecke operators $T(p^2)$. One computes the eigenvalues of $g_{\theta_2}, g_{\theta_8}$ for $T(3^2), T(5^2)$, namely $\lambda_3 = 0, \lambda_5 = -2$ which is different than the ones of $2g_{\theta_2} - g_{\theta_8}$. Therefore the spaces $< g_{\theta_2}, g_{\theta_8} >$ and $< 2g_{\theta_2} - g_{\theta_8} >$ are orthogonal since the Hecke operators are normal. One can see that $g(\theta_2 - \theta_8)$ has q^n appearing only when $n \equiv 3$ (mod 8) and g_{θ_8} has q^n appearing only when $n \equiv 1$ (mod 8). By the action of $T(p^2)$, it is clear that $T(p^2)g(\theta_2 - \theta_8)$ and $T(p^2)g_{\theta_8}$ have the same properties. This implies that $g(\theta_2 - \theta_8)$ and g_{θ_8} are individually eigenvalues. Finally, by Shimura correspondence, one has the forms ϕ_1 corresponding to $g(\theta_2 - \theta_8)$ and ϕ_2 corresponding g_{θ_8} which have the same $T(p)$-eigenvalues.
with those of $T(p^2)$ on $g(\theta_2 - \theta_8)$ and $g\theta_8$, respectively. Knowing $\lambda_3 = 0$ and
$\lambda_5 = -2$ and comparing these values with the table 3 of [Bi], one concludes that
$\phi_1 = \phi_2 = \phi$ is the only possibility. For the forms $g\theta_4$ and $g\theta_{16}$, one
proceeds n the same way.

In the second section, the main result relates the coefficients of our forms to $L(E^d,1)$ as follows:

Theorem 2. Let $g\theta_2 = \sum_1^{\infty} a(n)q^n$ and $g\theta_4 = \sum_1^{\infty} b(n)q^n$. For a square free
odd positive integer d, one has

$$L(E^d,1) = a(d)^2 \beta d^{-1/2}/4$$

and

$$L(E^d,1) = b(d)^2 \beta(2d)^{-1/2}/2$$

where $\beta = \int_1^{\infty} dx/(x^3 - x)^{1/2} \approx 2.6$ is the real period of E.

The author’s main tool to prove Theorem 2 is the following modified
version of Waldspurger’s theorem [Wa, Theorem 1]:

Lemma 3. Let ϕ be a newform of weight $k - 1$ and character χ^2 which is
the image of a form f of weight $k/2$ under Shimura’s map. Assume further
that 16 divides the level of ϕ. Then there exists a function $A(t)$ from square
free integers to \mathbb{C} such that

i. $A(t)^2 \epsilon(\chi_1 \chi_{-1}(k-1)/2, 1/2) = 2(2\pi)^{(1-k)/2}\Gamma((k-1)/2)L(\phi \chi_1 \chi_{-1}(k-1)/2, \chi_{(k-1)/2}/2)$

ii. For each positive integer N, there exists a finite set of explicitly de-
scribed functions $c(n)$ such that $\sum A(n^g) c(n) q^n$ for $c(n)$ is the set spans
the forms of weight $k/2$, level N, and character χ which correspond to
ϕ via Shimura’s map.

The factor $\epsilon(\eta, 1/2) = 1$ when η is quadratic [Ta]. One needs to determine
the functions $c(n)$ in order to relate the coefficients $a(n)$ and $b(n)$ to $A(n)$

and so, to $L(E^d,1)$. Luckily, they are explicitly given in section VIII.4 of
[Wa]. By analyzing the tables in [Wa] and Table 1 in [Bs], one verifies the
theorem.

In the third section, one concludes the proof of the theorem as an imme-
diate corollary of theorem 2 and following result of Coates-Wiles [Co]:
Theorem 4. Let E be an elliptic curve over \mathbb{Q} with complex multiplication by the ring of integers of a quadratic field with class number 1. If $L(E, 1) \neq 0$ then $E(\mathbb{Q})$ is finite.

If Birch-Swinnerton-Dyer conjecture is valid for the curves E^d then it follows from the theorem that d is congruent if and only if $L(E^d, 1) = 0$. By putting $b(n/2) = 0$ if $n/2$ is not integral, one reformulates the result as:

If $a(n) + b(n/2) \neq 0$ then n is noncongruent.

The author combines this with Birch-Swinnerton-Dyer conjecture to give the following sharp conjecture:

Conjecture. Let d be a square free integer. Then d is a congruent number if and only of $a(n) + b(n/2) = 0$. If d is noncongruent then the order of Tate-Shafarevich group $|\Sha(E^d)|$ is $(a(d)/\sigma_0(d))^2$ when d is odd and $(b(d/2)/\sigma_0(d/2))^2$ when d is even, where $\sigma_0(d)$ is the number of positive divisors of d.

He concludes his paper by proving some classical results on congruent number problem as applications of the theorem.

References

