A learning strategy commonly used by novice golfers is to imagine their arms moving as a pendulum while they are putting. By doing this, the two arms and hands can work together as one, with the elbows and wrists locked in place. This strategy forces golfers to place more internal focus on the mechanical aspects of the putt. An alternative learning strategy is to embrace an external focus of attention by focusing on a marking on the golf ball while putting. The action effect hypothesis states that novices will learn with more proficiency when focusing on the external effects of an action rather than internally on the movement patterns (Prinz, 1997; Wulf, McNevin, & Shea, 2001; Wulf & Prinz, 2001). This hypothesis will be tested by having one group putt balls using an internal focus of attention (i.e., “putt as if your arms are a clock pendulum”), while the other group will use an external focus of attention (i.e., “focus on the mark on the golf ball”). Shooting accuracy will be recorded. Furthermore, left and right EEG brain wave activity will be collected. Greater left hemisphere alpha band frequency will reflect a quieter left brain/more active right brain scenario, while greater right hemisphere alpha band frequency will reflect a quieter right brain/more active left brain scenario. It is hypothesized that those using an external focus strategy will putt with more accuracy and show greater right hemisphere EEG activity, thus supporting the action effect hypothesis and optimal cerebral functioning.