Potency testing of up to twenty cannabinoids by liquid chromatography diode-array detector with optional electrospray ionization time-of-flight mass spectrometry

Liguo Song*, Gabrielle Valenzuela, Shelby Carlson, Zachary Dodson and Mojisola Adisa Department of Chemistry, Western Illinois University, Macomb, Illinois 61455, United States

*Corresponding author. Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA. *Email address:* 1-song@wiu.edu. Telephone: 1 309 298 1656. Fax: 1 309 298 2180.

Fig. 2. Effects of (A) content of formic acid in the aqueous solvent containing 1 mM ammonium formate (73% (v/v) acetonitrile in the mobile phase) and (B) content of acetonitrile in the mobile phase (the aqueous solvent containing 1 mM ammonium acetate and 0.021% (v/v) formic acid) on retention time of cannabinoids.

Fig. 3. LC separation of 1 μ g mL⁻¹ cannabinoids except ACBD at 0.1 μ g mL⁻¹ under optimized conditions: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their [M+H]⁺ ions except [M+H-H₂O]⁺ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Table 1

M1 RRT0.50 0.07 0.23 0.84 0.08 1.22 0.74 M2 RRT0.50 0.31 0.06 0.18 0.34 0.72 0.05 7.92 0.18 9.76 7.66 M3 0.08 9.87 0.41 0.52 RRT1.33 0.28 0.38 11.53 0.24 M4 0.04 3.71 0.08 0.33 0.33 0.07 0.12 4.26 0.06	9.17 3.58 2.95
M2 RRT0.50 0.31 0.06 0.18 0.34 0.72 0.05 7.92 0.18 9.76 7.66 M3 0.08 9.87 0.41 0.52 RRT1.33 0.28 0.38 11.53 0.24 M4 0.04 3.71 0.08 0.33 0.33 0.07 0.12 4.26 0.06	9.17 3.58 2.95
M3 0.08 9.87 0.41 0.52 RRTI.33 0.28 0.38 11.53 0.24 M4 0.04 3.71 0.08 0.33 0.07 0.12 4.26 0.06	9.17 3.58 2.95
MA 0.0A 2.71 0.09 0.22 0.07 0.12 4.26 0.06	3.58 2.95
IVI+ 0.04 5.71 0.06 0.55 0.07 0.15 4.50 0.06	2.95
M5 3.12 0.15 0.21 RRT1.33 0.19 1.76 0.13 5.56 1.73	11.25
M6 RRT0.50 0.16 0.11 0.22 0.36 4.21 0.16 5.22 4.05	11.25
M7 RRT0.50 12.00 0.66 0.73 0.05 0.12 RRT1.33 0.69 MP2 0.07 6.37 0.54 21.23 6.28	
M8 RRT0.50 4.23 0.13 0.71 0.07 RRT1.33 0.52 0.04 2.11 0.19 7.99 2.37	4.42
MC1 0.05 0.04 0.06 0.26 1.67 0.22 2.30 1.73	
MC2 0.09 0.07 0.12 0.36 2.88 0.16 3.68 2.88	
MC3 RRT0.50 0.13 0.04 0.10 0.19 0.45 4.74 0.19 5.84 4.61	
MC4 0.08 0.11 0.06 0.07 0.08 0.46 2.39 0.12 3.38 2.56	0.07
MC5 RRT0.50 0.19 0.37 0.08 0.11 0.19 0.51 6.12 0.16 7.74 5.88	0.17
H1 0.05 RRT0.54 7.77 0.13 0.05 1.74 RRT1.33 0.21 0.15 0.12 0.33 10.55 0.31	8.56
H2 0.06 RRT0.54 14.47 0.19 0.06 2.44 RRT1.33 0.32 0.59 0.22 1.56 0.11 20.07 0.52	15.13
H3 RRT0.54 7.44 0.07 3.52 RRT1.33 0.31 0.17 0.12 0.26 0.06 11.93 0.41	10.04
H4 6.80 0.06 1.00 RRT1.33 0.13 0.07 0.14 0.25 8.46 0.25	6.97
H5 3.02 10.66 0.54 0.50 0.15 0.21 0.12 0.33 0.06 15.59 0.26	3.15
HC1 1.77 3.96 0.91 2.70 0.14 0.27 0.10 0.11 9.96 0.14	4.26
Δ ⁸ -H1 MP1 7.81 0.72 0.36 4.67 0.18 0.15 13.89 0.36	
Δ ⁸ -H2 RRT0.54 3.85 26.97 0.17 RRT1.33 5.16 12.13 RRT1.82 0.07 0.15 0.18 48.81 5.22	30.34

Average content (%, w/w) of cannabinoids in twenty-one samples measured in triplicates (TTHC, total THC; TCBD, total CBD).

THCV and CBL were only detected in Δ^8 -H2, both at 0.06% (w/w), while CBLA was only detected in H2 at 0.06% (w/w).

Please refer to the texts for the abbreviations reported in green, light red and dark red.

Supplementary Figure S2. M1: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S3. M2: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S4. M3: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S5. M4: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S6. M5: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S7. M6: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S8. M7: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S9. M8: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S10. MC1: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S11. MC2: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ± 20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S12. MC3: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S13. MC4: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S14. MC5: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S15. H1: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S16. H2: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S17. H3: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S18. H4: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S19. H5: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S20. HC1: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their $[M+H]^+$ ions except $[M+H-H_2O]^+$ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S21. Δ^{8} -H1: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their [M+H]⁺ ions except [M+H-H₂O]⁺ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Supplementary Figure S22. Δ^{8} -H2: (A) LC-UV chromatogram at 230 nm and (B) LC-ESI/TOFMS extracted ion chromatograms using their [M+H]⁺ ions except [M+H-H₂O]⁺ ion of CBGA with ±20 ppm (peaks were both color coded and labelled for easy distinguish).

Valid	ation																		
param	eters	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	CBNA	Δ^9 -THC	Δ^{8} -THC	CBL	CBC	Δ^9 -THCA	CBCA	CBLA	CBT
						0.998	0.998			0.998				0.998	0.998				0.998
\mathbb{R}^2	Day 1	0.9983	0.9986	0.9991	0.9993	9	4	0.9992	0.9990	0	0.9981	0.9975	0.9985	0	3	0.9966	0.9988	0.9983	0
						0.998	0.997			0.998				0.996	0.994				0.997
	Day 2	0.9984	0.9985	0.9987	0.9989	4	7	0.9988	0.9978	9	0.9979	0.9982	0.9969	5	8	0.9987	0.9949	0.9975	9
						0.999	0.999			0.998				0.998	0.999				0.997
	Day 3	0.9983	0.9989	0.9987	0.9990	0	2	0.9989	0.9987	7	0.9991	0.9980	0.9972	8	1	0.9989	0.9985	0.9975	5
LLOO	Day 1	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
LECQ	Duyi	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Day 2	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Day 3	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
ULOO	Dav 1	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
	<i>j</i> -																	2.00	
	Day 2	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
	Day 3	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00

Concen tration	RSD (%)	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	CBNA	Δ ⁹ -THC	∆ ⁸ -THC	CBL	CBC	Δ ⁹ -THCA	CBCA	CBLA	CBT
0.02	Day 1	1.9	0.1	1.7	1.2	1.6	2.7	1.9	2.9	3.1	2.1	1.6	2.7	4.2	2.5	2.3	2.0	4.2	6.1
	Day 2	2.5	4.9	0.6	3.0	4.6	2.0	3.4	2.8	1.2	3.8	1.5	3.8	1.6	1.6	1.9	3.2	5.3	0.9
	Day 3	8.6	2.5	3.1	3.1	0.7	1.4	3.0	7.0	2.9	1.2	5.3	3.5	2.6	1.6	4.9	4.6	2.3	8.0
	Interday	5.4	2.7	3.2	1.7	8.1	5.6	2.2	3.3	3.9	5.8	4.7	6.9	6.0	2.3	9.4	5.4	8.7	8.2
0.5	Day 1	0.1	0.2	0.3	0.4	0.3	1.0	0.6	0.9	0.3	1.1	0.6	0.4	0.6	0.1	1.6	5.4	1.3	2.4
	Day 2	0.5	0.5	0.5	0.7	0.3	0.4	0.4	0.8	0.3	1.3	3.0	2.0	0.7	0.3	1.9	2.1	0.7	2.5
	Day 3	1.3	0.2	0.4	1.7	0.1	0.3	0.4	2.1	1.5	0.3	2.1	0.7	0.9	0.5	0.3	0.5	1.8	1.3
	Interday	2.2	1.3	0.5	1.3	5.3	4.4	0.4	0.2	0.5	1.0	0.8	2.4	1.1	1.7	4.3	4.0	1.7	1.2
12.5	Day 1	0.1	0.0	0.1	0.1	0.7	1.8	0.4	0.1	3.3	1.2	0.2	0.1	0.2	0.2	0.1	0.1	0.1	1.2
	Day 2	0.5	0.6	0.5	0.6	1.3	0.4	0.6	0.6	1.9	0.6	3.9	0.5	0.4	0.4	0.5	0.5	0.8	1.6
	Day 3	0.4	0.7	0.4	0.4	0.2	0.4	0.4	0.4	0.4	0.4	0.6	0.5	0.6	0.5	2.2	0.3	1.0	0.7
	Interday	3.9	0.8	3.6	3.6	4.7	3.3	4.1	3.7	4.2	4.3	3.4	3.3	4.2	2.7	3.0	2.8	6.1	4.3

Supplementary Table S2. Precision of the QC samples: RSD values were computed using triplicate measurements for both intraday and interday.

Supplementary Table S3. Accuracy of the QC samples: average recovery values were computed using triplicate measurements for both intraday and

interday.

Concen	Accuracy																		
tration	(%)	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	CBNA	Δ^9 -THC	Δ^{8} -THC	CBL	CBC	Δ ⁹ -THCA	CBCA	CBLA	CBT
															108.				
0.02	Day 1	105.1	102.6	103.3	98.1	97.3	98.6	97.7	100.5	99.6	109.4	96.5	95.9	89.6	3	91.1	90.2	90.0	90.9
										100.					103.				107.
	Day 2	98.3	103.0	99.5	101.1	92.9	96.1	102.0	96.4	9	109.8	105.5	110.0	88.4	6	109.2	95.1	106.1	2
						108.	106.			107.					104.				100.
	Day 3	94.6	107.7	96.9	100.9	6	9	101.0	94.3	0	98.9	104.0	104.5	98.5	5	96.7	100.5	93.9	6
							100.			102.					105.				
	Interday	99.4	104.4	99.9	100.1	99.6	5	100.2	97.1	5	106.0	102.0	103.4	92.2	5	99.0	95.2	96.7	99.5
						102.	100.			104.				105.	102.				104.
0.5	Day 1	106.2	104.9	103.3	105.4	7	2	104.1	105.0	5	103.5	103.4	99.0	6	5	112.3	96.0	107.0	3
							108.			104.				103.	105.				102.
	Day 2	102.9	104.0	102.5	103.1	94.5	8	103.3	104.5	0	104.2	101.9	101.9	6	9	104.7	104.0	103.9	1
						104.	102.			104.				105.	103.				104.
	Day 3	101.8	106.7	102.3	103.0	5	1	104.1	104.8	9	102.2	102.1	103.8	8	2	104.1	100.5	103.9	2
						100.	103.			104.				105.	103.				103.
	Interday	103.6	105.2	102.7	103.8	6	7	103.8	104.8	5	103.3	102.5	101.6	0	9	107.0	100.2	104.9	5
10.5		100.2	07.6	00.5	100.4	06.0	07.5	07.0	00.0	077	07.1	07.2	100.0	07.4	07.4	104.0	102.2	065	00.0
12.5	Day I	100.3	97.6	98.5	100.4	96.2	97.5	97.9	98.6	97.7	97.1	97.2	100.0	97.4	97.4	104.9	102.3	96.5	98.8
		102.2	00.2	100.1	00.0	00.0	102.	00.0	100.5	07.0	07.1	05.2	07.4	00.4	00.0	00.7	107.5	05.5	00.1
	Day 2	102.3	99.3	100.1	98.8	98.9	9	98.8	100.5	97.0	97.1	95.3	97.4	98.4	99.8	99.7	107.5	95.5	98.1
		100.2	00.7	105.5	105.0	105.	103.	105.4	106.0	104.	104.5	101.7	101.0	105.	102.	105.4	107.2	106.4	105.
	Day 3	108.2	98.7	105.5	105.8	4	5	105.4	106.0	2	104.5	101.7	104.0	1	8	105.4	107.3	106.4	9
		100.5			101.5	100.	101.							100.	100.				101.
	Interday	103.6	98.5	101.4	101.6	2	3	100.7	101.7	99.8	99.6	98.1	100.5	3	0	103.4	105.7	99.5	0

Sample	Recovery (%)	RSD (%)
M0	102.6	2.2
M1	98.5	1.3
M2	106.1	2.5
M3	105.7	1.6
M4	103.0	2.1
M5	101.3	1.8
M6	106.0	3.3
M7	99.1	4.1
M8	98.1	2.6
MC0	101.6	1.5
MC1	96.1	4.6
MC2	98.0	4.8
MC3	93.6	1.9
MC4	95.3	7.0
MC5	103.3	4.0
H1	99.6	3.6
H2	101.2	2.1
H3	101.9	3.1
H4	101.9	3.7
H5	102.6	1.1
HC1	99.6	1.4
Δ^8 -H1	99.1	2.8
Λ^{8} -H2	100.8	3.4

Supplementary Table S4. Average recovery of 0.3% (w/w) ACBD spiked in 23 samples and the corresponding RSD value measured in triplicates.

Sample	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	CBNA	Δ^9 -THC	Δ^8 -THC	CBL	CBC	Δ^9 -THCA	CBCA	CBLA	CBT	Total	TTHC	TCBD
M1									3.0	4.3					2.7	10.4			1.8	2.9	
M2				13.3				6.2	13.4	11.8	9.8			17.5	12.0	13.6			11.8	11.8	
M3	6.7		5.8	5.5		5.4									7.3	1.4			5.7	5.8	5.8
M4	4.0		4.3	6.7		3.7									12.0	7.0			4.0	12.0	4.3
M5			3.9	6.7		6.3					9.7				4.9	5.9			4.4	5.4	4.1
M6				4.5					6.3	0.9	4.9				2.2	6.7			2.7	2.5	
M7			1.4	1.6		1.8		3.7	4.4		1.7			0.9	1.8	1.7			1.5	1.8	1.4
M8			5.1	4.5		5.6			7.3		5.6			10.2	5.1	4.8			5.3	5.2	5.2
MC1				5.7					2.2	5.9	1.3				2.5	4.1			2.5	2.3	
MC2				8.7					5.5	8.5	10.4				9.5	9.5			9.2	9.6	
MC3				3.7				6.4	1.5	6.0	5.0				5.6	2.4			5.4	5.6	
MC4			7.3	12.0				4.8	5.4	10.4	8.6				16.0	11.4			13.5	14.5	6.1
MC5			4.2	4.4				5.8	4.2	1.2	3.9				3.5	1.3			3.5	3.5	4.9
H1	9.5		7.6	7.1	8.2	5.6					8.7			8.9	8.1	5.4			7.2	8.4	12.3
H2	1.1		1.4	1.2	2.7	0.7					2.7			1.6	0.8	1.8	3.3	4.9	1.3	1.7	2.0
H3			3.8	3.8		2.9					4.1			3.8	5.1	2.8		3.0	3.5	4.3	6.2
H4			3.8	3.6		5.4					3.1			4.8	4.4	3.6			4.0	3.7	4.0
H5			1.7	1.7	2.0	1.8					0.9			1.5	1.2	1.5		5.8	1.6	0.8	1.7
HC1			4.0	6.3	4.8	4.0					4.5			4.0		5.0		9.8	5.0	3.3	4.0
Δ^8 -H1				11.8	7.6						10.5	11.0		7.1		3.6			11.0	10.4	19.6
Δ^{8} -H2			3.0			3.1	4.7		1.6		2.8	2.8	7.9		5.0	7.7		8.0	3.0	2.8	3.1

Supplementary Table S5. RSD values (%) of the corresponding contents listed in Table 1 (TTHC, total THC; TCBD, total CBD).