Potency testing of up to sixteen cannabinoids in hemp-infused edibles using liquid chromatography diode array detector with optional confirmation of identity by electrospray ionization time-of-flight mass spectrometry

Liguo Song*, Grant Meyer, Emmanuel Adejumo, Emily Jovanovich, Lindsey LeBlanc, Jake Provis Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA

*Corresponding author: telephone 1 309 298 1656.

Email addresses: <u>l-song@wiu.edu</u> (L. G. Song), <u>gr-meyer@wiu.edu</u> (G. Meyer), <u>es-adejumo@wiu.edu</u> (E. Adejumo), <u>em-jovanovich@wiu.edu</u> (E. Jovanovich), <u>ln-leblanc@wiu.edu</u> (L. LeBlanc), <u>jp-provis@wiu.edu</u> (J. Provis).

Fig. 1. Effects of the content of formic acid in the aqueous solvent on the retention time of cannabinoids. Default content of acetonitrile and column oven temperature were 73% (v/v) and 30°C. The separated mixture contained 1 μ g/mL individual cannabinoid except for ACBD at 0.5 μ g/mL.

Fig. 2. LC-UV chromatograms (A and C) and LC-EICs (B and D) of cannabinoids (both color coded and labelled in LC-EICs) at 1 μ g/mL except for ACBD at 0.5 μ g/mL using an aqueous solvent containing 2 mM ammonium formate and 0.011% (v/v) formic acid and a mobile phase containing 73% (v/v) acetonitrile at 30°C (A and B) and 45°C (C and D).

Fig. 3. LC-UV chromatogram of cannabinoids at LOQ level, i.e., $0.02 \mu g/mL$, except for ACBD at $0.5 \mu g/mL$ detected at 230 nm under optimized LC conditions: an aqueous solvent containing 2 mM ammonium formate and 0.011% formic acid (v/v) and a mobile phase containing 73% (v/v) acetonitrile at 30°C.

Fig. 4. LC-UV chromatograms (A, C, E) and LC-EICs (B, D, F) (cannabinoids are both color coded and labelled in LC-EICs) of 2.50 mg/mL grapefruit sparkling coconut water spiked with 0.003% (w/w) ACBD, 250 μg/mL CBD gourmet gummies (sweet watermelon flavor) spiked with 0.3% (w/w) ACBD, and 250 μg/mL CBD cat food kitty nugs spiked with 0.1% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Table 1

Edibles ¹	ACBD ²	CBDV	CBG	CBD	CBN	Δ^9 -THC	CBC	CBT	Total ³
E1	0.003×98%			0.0058					0.0058
E2	0.003×97%			0.0040					0.0040
E3	0.3×90%			0.068					0.068
E4	0.3×96%		1.413	0.489					1.903
E5	0.3×93%			0.010	0.393				0.404
E6	0.3×96%	0.011		1.174		0.009	0.010	0.010	1.214
E7	0.3×94%	0.008	0.027	1.157		0.020	0.008	0.036	1.256
E8	0.3×100%			0.033					0.033
E9	0.3×102%			0.524					0.524
E10	0.3×100%			0.393			0.019		0.412
E11	0.3×103%		0.058	0.048					0.106
E12	0.3×101%			0.043					0.043
E13	0.1×91%			0.024					0.024
E14	0.1×97%			0.211			0.014		0.225
E15	0.1×95%			0.125					0.125
E16	0.1×99%			0.029					0.029
E17	0.1×95%	0.009	0.080	1.440		0.018	0.056		1.603
E18	0.1×97%			0.026					0.026
E19	0.1×91%			0.097					0.097
E20	0.3×108%	0.025	0.008	6.068	0.009	0.172	0.012	0.133	6.429

Average content (%, w/w) of cannabinoids in hemp-infused edibles measured in triplicates.

¹Please refer to section 2.1. Chemicals and reagents for the identity of each edible; ²Spiking content × recovery %; ³Excluding ACBD.

Table 2

Edibles ¹	ACBD	CBDV	CBG	CBD	CBN	Δ^9 -THC	CBC	CBT	Total ²
E1	1.1			1.9					1.9
E2	0.5			5.4					5.4
E3	3.5			7.4					7.4
E4	3.3		5.8	5.7					5.8
E5	2.0			5.9	2.5				2.5
E6	2.6	4.1		2.4		4.5	3.7	14.7	2.5
E7	4.3	2.9	5.3	5.3		5.9	6.5	7.4	5.3
E8	1.7			2.9					2.9
E9	0.8			2.9					2.9
E10	2.0			4.8			3.0		4.5
E11	6.5		8.2	4.0					6.2
E12	3.3			9.5					9.5
E13	0.8			1.0					1.0
E14	1.4			0.8			3.4		0.5
E15	1.2			1.4					1.4
E16	0.7			2.9					2.9
E17	1.6	0.5	3.3	1.3		1.8	1.1		1.3
E18	5.1			7.4					7.4
E19	1.5			1.8					1.8
E20	2.4	5.0	2.0	4.3	1.6	2.0	3.9	3.1	4.1

RSD values (%) of cannabinoids in hemp-infused edibles measured in triplicates.

¹Please refer to section 2.1. Chemicals and reagents for the identity of each edible; ²Excluding ACBD.

Supplementary Fig. S1. Chemical structure of seventeen cannabinoids used in this study.

Supplementary Fig. S2. From top to bottom, UV absorption spectra of 1 µg/mL THCVA (A), CBG (B), CBCA (C), CBC (D), CBN (E), and CBT(F).

mAU vs. Wavelength (nm)

Supplementary Fig. S3. LC-UV chromatograms of cannabinoids at LOQ level, i.e., $0.02 \mu g/mL$, except for ACBD at $0.5 \mu g/mL$ under optimized LC conditions: an aqueous solvent containing 2 mM ammonium formate and 0.011% (v/v) formic acid and a mobile phase containing 73% (v/v) acetonitrile at 30°C.

Supplementary Fig. S4. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 2.50 mg/mL grapefruit sparkling coconut water spiked with 0.003% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Supplementary Fig. S5. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 2.50 mg/mL lemon sparkling black tea spiked with 0.003% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Supplementary Fig. S6. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL SCD probiotics + CBD

Response Units vs. Acquisition Time (min)

Response Units vs. Acquisition Time (min)

Supplementary Fig. S8. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBNight water soluble

Response Units vs. Acquisition Time (min)

Supplementary Fig. S9. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL water soluble full spectrum hemp oil (grape flavor) spiked with 0.3% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Supplementary Fig. S10. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL terpene rich hemp oil tincture (cinnamon flavor) spiked with 0.3% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Supplementary Fig. S12. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD energy gummies

Response Units vs. Acquisition Time (min)

Supplementary Fig. S13. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD gourmet gummies

(sweet watermelon flavor) spiked with 0.3% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Supplementary Fig. S14. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBG gummies (cherry

flavor) spiked with 0.3% (w/w) ACBD.

Response Units vs. Acquisition Time (min)

Response Units vs. Acquisition Time (min)

Supplementary Fig. S16. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD brownies spiked with 0.1% (w/w) ACBD.

Supplementary Fig. S17. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD cookies (Hermit)

Supplementary Fig. S18. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD krispy cereal

marshmallow treats spiked with 0.1% (w/w) ACBD.

Supplementary Fig. S19. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD popcorn spiked with 0.1% (w/w) ACBD.

Supplementary Fig. S20. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD cat food kitty nugs

spiked with 0.1% (w/w) ACBD.

Supplementary Fig. S21. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL CBD horse treats spiked

with 0.1% (w/w) ACBD.

Supplementary Fig. S22. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 250 µg/mL soft CBD dog treats spiked

Supplementary Fig. S24. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 25 mg/mL grapefruit sparkling coconut water spiked with 0.003% (w/w) ACBD. False identification of CBN, CBCA and CBLA from intense matrix peaks by UV at 230 nm were discovered by UV absorption spectra and ESI/TOFMS, but false identification of CBDV from an intense matrix peak by UV at 230 nm were discovered only by ESI/TOFMS. The intended LOQ was 0.00008% (w/w), 10 times lower than the validated method.

Supplementary Fig. S25. From top to bottom, LC-UV chromatogram (A) and LC-EICs (B) of 25 mg/mL lemon sparkling black tea spiked with 0.003% (w/w) ACBD. False identification of CBN, CBCA and CBLA from intense matrix peaks by UV at 230 nm were discovered by UV absorption spectra and ESI/TOFMS, but false identification of CBDV from an intense matrix peak by UV at 230 nm were discovered only by ESI/TOFMS. The intended LOQ was 0.00008% (w/w), 10 times lower than the validated method.

Supplementary Table S1

Accuracy of the QC samples: average recovery values were computed using triplicate measurements for both intraday and interday.

Concentration	Accuracy (%)	CBDVA	CBDV	CBDA	CBGA	THCVA	CBG	CBD	THCV	CBN	CBCA	Δ^9 -THCA	Δ^9 -THC	Δ^8 -THC	CBC	CBT
0.02	Day 1	96.8	104.1	103.1	91.6	102.6	103.3	112.4	103.5	104.4	99.6	98.6	110.7	109.9	99.3	108.6
	Day 2	103.2	101.9	106.0	105.9	95.2	92.9	101.2	97.4	98.2	94.9	92.0	99.5	112.3	97.8	91.8
	Day 3	101.5	101.8	96.6	100.0	92.5	103.9	102.2	99.9	104.5	101.2	97.1	107.2	102.6	103.0	109.7
	Interday	100.5	102.6	101.9	99.2	96.8	100.0	105.2	100.3	102.4	98.6	95.9	105.8	108.2	100.0	103.4
0.5	Day 1	99.7	105.1	97.6	98.4	95.1	103.1	100.6	100.4	100.4	96.6	98.7	97.9	101.5	100.4	99.9
	Day 2	99.2	98.4	99.4	97.5	97.9	97.9	101.7	100.6	100.3	94.8	98.1	100.3	101.2	99.6	100.3
	Day 3	99.0	102.6	99.4	96.6	100.5	103.5	101.6	102.0	102.7	96.7	99.6	101.2	104.6	102.1	100.6
	Interday	99.3	102.0	98.8	97.5	97.8	101.5	101.3	101.0	101.1	96.1	98.8	99.8	102.4	100.7	100.3
12.5	Day 1	94.6	98.3	94.2	95.1	101.3	97.8	92.8	95.1	95.2	102.8	95.3	95.3	95.3	95.5	94.6
	Day 2	94.5	94.6	97.0	94.5	107.6	94.4	89.9	94.3	94.1	110.4	95.5	93.9	93.7	94.0	95.9
	Day 3	95.1	95.4	96.7	94.0	109.1	96.8	90.1	94.9	95.2	108.9	95.0	94.8	94.8	94.7	93.7
	Interday	94.7	96.1	95.9	94.6	106.0	96.3	90.9	94.8	94.9	107.4	95.3	94.7	94.6	94.8	94.7

Supplementary Table S2

Precision of the QC sample	les: RSD values were comp	outed using triplica	ate measurements for both intr	raday and interday.
				2 2

Concentration	Precision (%)	CBDVA	CBDV	CBDA	CBGA	THCVA	CBG	CBD	THCV	CBN	CBCA	Δ^9 -THCA	Δ^9 -THC	Δ^8 -THC	CBC	CBT
0.02	Day 1	3.2	2.0	1.9	0.8	2.6	5.1	4.5	3.5	4.2	1.7	1.4	3.7	5.0	0.8	2.1
	Day 2	1.4	2.7	4.5	7.9	3.6	3.4	1.8	3.8	4.5	1.5	5.6	6.3	3.7	3.2	1.6
	Day 3	7.3	3.0	3.1	1.6	1.1	0.9	5.6	4.8	7.2	1.8	2.6	2.2	0.8	0.6	4.2
	Interday	3.3	1.3	4.7	7.3	5.4	6.2	5.9	3.1	3.5	3.3	3.6	5.4	4.7	2.6	9.7
0.5	Day 1	0.5	0.9	1.4	1.0	4.3	0.1	0.3	0.4	0.3	0.3	0.3	4.3	0.4	1.0	0.5
	Day 2	0.7	3.7	0.5	1.0	0.8	3.9	0.3	0.1	1.2	1.7	0.5	1.4	1.6	0.2	0.2
	Day 3	0.2	0.4	0.1	0.2	0.9	0.8	0.5	0.3	0.0	1.9	0.1	1.1	0.4	0.2	1.8
	Interday	0.4	3.3	1.0	0.9	2.8	3.1	0.6	0.9	1.3	1.1	0.8	1.7	1.8	1.3	0.4
12.5	Day 1	0.4	0.2	0.3	0.5	0.2	0.6	0.6	0.4	0.2	0.3	0.3	0.3	0.3	0.3	0.2
	Day 2	0.2	2.1	0.5	0.3	3.0	0.5	0.1	0.2	0.1	2.7	0.3	0.5	2.3	0.2	0.2
	Day 3	0.2	0.3	0.4	0.2	0.3	0.3	1.3	0.1	0.2	1.1	1.3	0.1	1.0	0.4	0.5
	Interday	0.3	2.0	1.6	0.6	3.9	1.8	1.8	0.4	0.7	3.8	0.3	0.8	0.9	0.8	1.2